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Abstract

We study the problem of fairly allocating either a set of indivisible goods or a set of mixed
divisible and indivisible goods (i.e., mixed goods) to agents with additive utilities, taking the
best-of-both-worlds perspective of guaranteeing fairness properties both ex-ante and ex-post.
The ex-post fairness notions considered in this paper are relaxations of envy-freeness, specif-
ically, EFX for indivisible-goods allocation, and EFM for mixed-goods allocation. For two
agents, we show that there is a polynomial-time randomized algorithm that achieves ex-ante
envy-freeness and ex-post EFX / EFM simultaneously. For n agents with bi-valued utilities,
we show there exist randomized allocations that are (i) ex-ante proportional and ex-post EFM,
and (ii) ex-ante envy-free, ex-post EFX, and ex-post fractionally Pareto optimal.

1 Introduction

Fair division studies the problem of fairly allocating scarce resources among agents with hetero-
geneous preferences over the resources. It is a fundamental problem in society, with real-world
applications such as divorce settlement, rent division, course allocation, and more. Two classic
fairness notions in the literature are envy-freeness (EF) and proportionality (PROP). An allocation is
said to be envy-free if each agent values her own bundle weakly better than any other bundle in
the allocation, and proportional if every agent gets a bundle of value at least 1/n times her value
for the entire resources, where n is the number of agents.

Our focus in this paper is on the settings of allocating indivisible goods as well as a mix-
ture of both divisible and indivisible goods (henceforth referred to as mixed goods) when agents
have additive utilities, which have received significant attention in recent years [Amanatidis et al.,
2023; Liu et al., 2024; Suksompong, 2021, 2025]. Despite being desirable properties, neither envy-
freeness nor proportionality can always be satisfied when (deterministically) allocating indivisible
or mixed goods among the agents.

To circumvent the issue, relaxations of the notions have been proposed and studied. For in-
stance, when allocating indivisible goods, envy-freeness up to any good (EFX) (resp., envy-freeness
up to one good (EF1)) requires that an agent’s envy towards another agent should be eliminated

*A preliminary version appears in Proceedings of the 20th Conference on Web and Internet Economics (WINE) [Bu et al.,
2024].
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after the hypothetical removal of any (resp., some) good from the latter agent’s bundle [Budish,
2011; Caragiannis et al., 2019b]. While the existence of EFX allocations is only known in special
cases (cf. Section 1.2), the weaker notion of EF1 can always be satisfied, even for any number of
agents with arbitrary monotonic utilities [Lipton et al., 2004]. With mixed goods, Bei et al. [2021a]
proposed envy-freeness for mixed goods (EFM), which generalizes both envy-freeness and EF1 in the
following sense: An agent is envy-free towards any agent whose bundle contains some divisi-
ble goods and EF1 towards the rest. They showed that an EFM allocation always exists for any
number of agents with additive utilities.

An alternative and common method to achieve fairness is through randomization [see, e.g.,
Abdulkadiroğlu and Sönmez, 1998; Akbarpour and Nikzad, 2020; Bogomolnaia and Moulin, 2001;
Budish et al., 2013; Gölz et al., 2024]. With the power of randomization, envy-freeness and propor-
tionality can both be easily and trivially achieved by giving all goods to a single agent uniformly
at random. The realized allocation, however, is patently unfair since all agents but one are left
empty-handed.

Aziz et al. [2024a] timely introduced the best-of-both-worlds (BoBW) approach, which combines
the two aforementioned methods with the goal of constructing a randomized allocation (i.e., a
lottery over deterministic allocations) that is exactly fair ex-ante (before the randomness is real-
ized) and approximately fair ex-post (after the randomness is realized). They showed that ex-ante
envy-freeness and ex-post EF1 can be simultaneously achieved when agents have additive utili-
ties. In this paper, our goal is to strengthen the ex-post fairness guarantee to EFX when allocating
indivisible goods, and, for the first time, extend the study of best-of-both-worlds fairness to the
mixed-goods setting.

1.1 Our Results

As is common in the literature of fair division, we assume that agents have additive utilities when
allocating either indivisible or mixed goods.

In Section 3, we focus on two agents. While the work of Feldman et al. [2024] showed that
there always exists a randomized allocation that is ex-ante EF and ex-post EFX, we improve upon
the result by devising a polynomial-time algorithm to compute such a randomized allocation.1 Built
upon this result, we then show with mixed goods, a randomized allocation that is simultaneously
ex-ante EF and ex-post EFM can be found in polynomial time.

Next, we consider the n-agent cases, with Sections 4 and 5 focusing on mixed-goods and
indivisible-goods settings, respectively. In both cases, we assume that agents have bi-valued utili-
ties, i.e., each agent’s utility for each good belongs to one of two possible values.2

In Section 4, we devise a polynomial-time algorithm to compute an integral allocation sampled
from a randomized allocation that is ex-ante proportional and ex-post EFM. Our result on the
compatibility between EFM and ex-ante fairness notions adds to the growing literature revolved
around EFM when allocating mixed resources [Bhaskar et al., 2021; Li et al., 2024a, 2023, 2024b;
Nishimura and Sumita, 2023].

In Section 5, we devise a polynomial-time algorithm to compute an integral allocation sampled
from a randomized allocation that is ex-ante EF, ex-post EFX, and ex-post fPO.3 This generalizes

1An independent work of Garg and Sharma [2024] also gives a polynomial-time algorithm to achieve the same goal
by using a different approach. In addition to ex-ante EF and ex-post EFX, the method of Garg and Sharma [2024] can
additionally achieve ex-post 4/5-approximation of the maximin share.

2Binary utilities (the two possible values are 0 and 1) are special cases.
3Ex-post fractionally Pareto optimality (fPO), which can be found in Definition 2.3, is a stronger notion of economic

efficiency than ex-post Pareto optimality (PO).
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multiple results known in the literature. For instance, the compatibility between ex-ante EF, ex-
post EFX, and ex-post PO was only known for binary utilities [Babaioff et al., 2021; Halpern et al.,
2020].4 For bi-valued utilities, we only knew the compatibility of ex-post notions between EFX
and PO [Amanatidis et al., 2021] as well as between EFX and fPO [Garg and Murhekar, 2023].

1.2 Related Work

The fair allocation of indivisible goods has received extensive attention in the past decades [Amanatidis et al.,
2023; Suksompong, 2021, 2025]. Liu et al. [2024] overviewed the recent developments of mixed-
goods allocations. Below, we first discuss EFX existence results, followed by an overview of best-
of-both-worlds fairness in fair division.

EFX Existence The existence of EFX allocations remains largely open, though progress has been
made in special cases where the number of agents or agents’ utility functions are restricted. An
EFX allocation always exists for two agents with general utilities [Plaut and Roughgarden, 2020],
for three agents [Akrami et al., 2023a; Chaudhury et al., 2024], as well as for any number of agents
with restricted utilities such as being identical [Plaut and Roughgarden, 2020], binary submod-
ular [Babaioff et al., 2021] or more general [Bu et al., 2023], bi-valued [Amanatidis et al., 2021;
Garg and Murhekar, 2023], or when there are two types of agents and agents of the same type have
identical additive utilities [Mahara, 2023]. There have been lines of work focusing on approximately-
EFX allocations [Akrami et al., 2023a; Amanatidis et al., 2020], partial allocations that are EFX [Berger et al.,
2022; Caragiannis et al., 2019a; Chaudhury et al., 2021], or a combination of both [Chaudhury et al.,
2023].

BoBW Fairness In addition to the compatibility result between ex-ante EF and ex-post EF1
mentioned above, Aziz et al. [2024a] showed several impossibility results regarding achieving
BoBW fair and economically efficient allocations. For agents with weighted entitlements, ex-ante
weighted envy-freeness (WEF) is compatible with ex-post weighted transfer envy-freeness up
to one good, but not compatible with any stronger ex-post WEF relaxation [Aziz et al., 2023a;
Hoefer et al., 2023]. For agents with subadditive utilities, ex-ante 1

2 -EF, ex-post 1
2 -EFX and ex-post

EF1 can be achieved simultaneously [Feldman et al., 2024]. Best-of-both-worlds fairness has also
been explored for fair-share-based notions like proportionality and the maximin share (MMS) guar-
antee for agents with additive [Akrami et al., 2024; Babaioff et al., 2022] or fractionally subadditive
utilities [Akrami et al., 2023b]. Babaioff et al. [2022] showed ex-ante proportionality and ex-post
1
2 -MMS are compatible. The ex-post MMS approximation ratio was improved in [Akrami et al.,
2024], at the cost of weakening ex-ante fairness guarantees.

Slightly further afield, the BoBW paradigm has also been applied to the contexts of collective
choice such as committee voting [Aziz et al., 2023b; Suzuki and Vollen, 2024] and participatory
budgeting [Aziz et al., 2024b].

2 Preliminaries

For each positive integer t, let [t] := {1, 2, . . . , t}. Denote by N = [n] the set of n agents to whom
we allocate resources. In this paper, we consider both indivisible-goods and mixed-goods settings.
Let M ∪ D be the set of mixed goods, where M = {g1, g2, . . . , gm} is the set of m indivisible goods

4The result of Babaioff et al. [2021] works for binary submodular (also known as matroid-rank) utilities.
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and D = {d1, d2, . . . , dm} is the set of m homogeneous divisible goods. When D = ∅, we are
concerned with the indivisible-goods setting.

Allocations A fractional allocation of mixed goods M ∪D to the agents in N is specified by a non-
negative n× (m+m) matrix X = (Xig)i∈N,g∈M∪D such that for each g ∈ M∪D, ∑i∈N Xig = 1; here,
Xig ∈ [0, 1] denotes the fraction of good g assigned to agent i. The i-th row Xi of the matrix denotes
the goods allocated to agent i in the fractional allocation. When we simply say “an allocation”, it
will mean a fractional allocation, unless otherwise clear from the context.

A fractional allocation X is integral if Xig ∈ {0, 1} for every i ∈ N and every indivisible
good g ∈ M. Given an integral allocation X, denote by Mi := {g ∈ M | Xig = 1} the set of indivis-
ible goods assigned to agent i, and let the m-dimensional vector xi = (xi1, xi2, . . . , xim) := (Xig)g∈D

represent the divisible goods received by agent i. We will refer to Ai = (Mi, xi) as the bundle of
mixed goods allocated to agent i. The integral allocation is written as A = (Ai)i∈N . We slightly
abuse notation by also usingA as an n× (m + m)-matrix representation of the integral allocation.

A randomized allocation is a probability distribution over integral allocations and specified by a
set of s ∈ N tuples {(pj,Aj)}j∈[s], where pj ∈ [0, 1], ∑j∈[s] pj = 1, and Aj is an integral allocation
implemented with probability pj. A randomized allocation {(pj,Aj)}j∈[s] is called an implementa-
tion of (or, interchangeably, implements) a fractional allocation X if X = ∑j∈[s] pj · Aj.

Utilities Each agent i ∈ N is associated with an additive utility function ui, where ui(g) ≥ 0
denotes the agent’s utility for fully receiving good g ∈ M ∪ D. We say that agents have bi-valued
utilities if for each i ∈ N and g ∈ M∪D, ui(g) ∈ {a, b}, where 0 ≤ a < b are distinct, non-negative
real values.5 When a = 0 and b = 1, agents are said to have binary utilities. Given an allocation X,
the utility of agent i is given by ui(X) = ui(Xi) = ∑g∈M∪D Xig · ui(g).

Solution Concepts We now introduce fairness notions. The first two concepts—envy-freeness [Foley,
1967; Varian, 1974] and proportionality [Steinhaus, 1948]—are defined for allocations, fractional
or integral. An allocation X is said to satisfy envy-freeness (EF) if for any pair of agents i, j ∈ N,

ui(Xi) ≥ ui(Xj), and proportionality (PROP) if for any agent i ∈ N, ui(Xi) ≥
ui(M∪D)

n . Our next
notions are compelling relaxations of envy-freeness when concerning integral allocations of indi-
visible goods.

Definition 2.1 (EF1 [Budish, 2011; Lipton et al., 2004] and EFX [Caragiannis et al., 2019b; Plaut and Roughgarden,
2020]). An integral allocation (Mi)i∈N of indivisible goods M is said to satisfy

• envy-freeness up to one good (EF1) if for any pair of agents i, j ∈ N such that Mj 6= ∅, we have
ui(Mi) ≥ ui(Mj \ {g}) for some g ∈ Mj;

• envy-freeness up to any good (EFX) if for any pair of agents i, j ∈ N such that Mj 6= ∅, we have
ui(Mi) ≥ ui(Mj \ {g}) for all g ∈ Mj.

With mixed goods, the following notion combines and generalizes both envy-freeness and EF1.

Definition 2.2 (EFM [Bei et al., 2021a]). An integral allocation (Ai)i∈N of mixed goods M ∪ D is
said to satisfy envy-freeness for mixed goods (EFM) if for any pair of agents i, j ∈ N,

• if agent j’s bundle consists of only indivisible goods (i.e., xj = 0) and Mj 6= ∅, there exists
some g ∈ Mj such that ui(Ai) ≥ ui(Mj \ {g});

5We will later use an agent’s “large good” (resp., “small good”) to refer to a good of value b (resp., a) to the agent.
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• otherwise, ui(Ai) ≥ ui(Aj).

Finally, we introduce an economic efficiency notion of importance in the context of fair divi-
sion.

Definition 2.3 (fPO). An integral allocation (Mi)i∈N of indivisible goods M is said to satisfy frac-
tionally Pareto optimal (fPO) if there is no fractional allocation Y of indivisible goods M such that
ui(Yi) ≥ ui(Mi) for all agents i ∈ N and uj(Yj) > uj(Mj) for some agent j ∈ N.

We say a randomized allocation satisfies a property ex-ante (resp., ex-post) if the fractional
allocation it implements (resp., every integral allocation in its support) satisfies the property. This
paper concerns the problem of designing randomized algorithms that simultaneously achieve
desirable properties both ex-ante and ex-post. Our algorithms do not explicitly output the desired
randomized allocation and instead sample integral allocations from their supports.

3 Two Agents

In this section, we study the best-of-both-worlds fair allocation of indivisible and mixed goods
for two agents. With indivisible goods, Feldman et al. [2024] showed the existence of a random-
ized allocation that is ex-ante EF and ex-post EFX. We improve upon their result by presenting
a polynomial-time algorithm to identify such an allocation. We then leverage this algorithm to
provide a randomized allocation of mixed goods that is both ex-ante EF and ex-post EFM in poly-
nomial time.

An independent work of Garg and Sharma [2024] gives a fundamentally different polynomial-
time algorithm to achieve the same goal, ex-ante EF and ex-post EFX. In addition, their algorithm
can achieve the extra fairness guarantee of ex-post 4

5 -MMS.
In Proposition A.2 and Lemma A.1 of Feldman et al. [2024], the requirement for ex-post EFX in-

volves initially identifying two allocations, denoted as A1 and A2, which minimize the difference
between two bundles under utility functions u1 and u2 respectively. The cut-and-choose protocol
is then employed to determine the owner of each bundle in both allocations. The minimization
of differences ensures that, for each agent i ∈ [2], the loss in allocation Ai can be bounded by the
gain in allocation A3−i, thereby ensuring ex-ante EF. Their mechanism involves an NP-hard step
of finding an allocation that minimizes the difference. In contrast, our focus is solely on identify-
ing two corresponding EFX allocations under utility functions u1 and u2, ensuring that the loss in
Ai is bounded by the gain in A3−i for each agent i. Motivated by this, we present our algorithm,
whose pseudocode can be found in Algorithm 3 in Appendix A.

In Algorithm 3, we incorporate a subroutine called LocalSearch (lines 12 to 18), which, given
an arbitrary allocation (A, B) and a utility function u, returns an integral EFX allocation with re-
spect to u.6 The following lemma shows this subroutine produces in polynomial time an EFX allo-
cation with a weakly smaller utility difference between its two bundles compared to the provided
allocation (A, B). Its proof, along with all other omitted proofs, can be found in the appendices.

6While our LocalSearch technique and the proof technique used by Plaut and Roughgarden [2020] to show their
Theorem 4.2 share certain similarities, as we both update the current non-EFX allocation by moving some good from a
bundle of higher value to a bundle of lower value, there are differences as well, mainly because we consider different
utility classes. For instance, Plaut and Roughgarden showed the leximin++ solution is EFX for n agents with general
but identical utilities. In addition to bundles’ values, the leximin++ solution also takes into account of bundles’ sizes.
But since we focus on two agents with additive utilities, our LocalSearch only updates allocations based on bundles’
values.
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Lemma 3.1. LocalSearch(A, B, u) returns in polynomial time an integral EFX allocation (A′, B′) under
utility function u with |u(B′)− u(A′)| ≤ |u(B)− u(A)|.

By leveraging the subroutine, we now describe our main procedure (lines 1 to 11). For each
agent i ∈ [2], we maintain an allocation Ai which is an integral EFX allocation under ui. If one
of them is an envy-free allocation under the utility profile (u1, u2) (lines 2 to 3), we return this
allocation directly. Otherwise, either

• there exists an allocation Ai which has a smaller utility difference over two bundles than
that in A3−i under u3−i, we updateA3−i from Ai by using LocalSearch (lines 4-10), or

• we find the desired ex-ante EF allocation {(0.5,A1), (0.5,A2)} (line 11).

Theorem 3.2. In the indivisible-goods setting, Algorithm 3 returns an ex-ante EF and ex-post EFX allo-
cation in polynomial time for two agents with additive utilities.

In the context of the mixed-goods setting, Algorithm 3 can be employed to identify an alloca-
tion that is both ex-ante EF and ex-post EFM. Specifically, we first merge all divisible goods in D
to a single indivisible good d with an equal total utility and then execute Algorithm 3 on M ∪ {d}.
If the output is a single integral allocation, it is an EF (thus EFM) allocation. Otherwise, if there
exists an agent i ∈ [2] such that the good d is in bundle Ai

2 (the bundle with the larger utility),
we can transfer a fraction of d to Ai

1 to reach EF. If no such agent exists, since all divisible goods
are consistently in the bundle with the smaller utility, EFM can be reduced to EF1, which is then
satisfied by the ex-post EFX property.

Theorem 3.3. In the mixed-goods setting, an ex-ante EF and ex-post EFM allocation can be found in
polynomial time for two agents with additive utilities.

We remark that the above procedure can also ensure a stronger ex-post fairness property called
envy-freeness up to any indivisible good for mixed goods (EFXM) [Bei et al., 2021a; Nishimura and Sumita,
2023], which replaces the adopted EF1 criteria by the EFX criteria when comparing to the bundle
containing only indivisible goods.

4 BoBW Fairness with Mixed Goods: Ex-Ante PROP + Ex-Post EFM

In this section, we study the best-of-both-worlds fairness in the mixed-goods setting where agents
have bi-valued utilities over the set of divisible and indivisible goods. Our main result is the
following:

Theorem 4.1. In the mixed-goods setting where agents have bi-valued utilities, there exists an algorithm
which can compute in polynomial time an integral allocation sampled from a randomized allocation that is
ex-ante proportional and ex-post EFM.

4.1 Technical Overview

We have devised the following techniques specifically for BoBW fairness with mixed goods.

6



Baseline comparison. This technique is designed to show our randomized allocation satisfies
ex-ante proportionality. Fix any agent i, we construct a baseline allocation Bi = (Bi

1, . . . , Bi
n) based

on ui. We partition the outcomes of the randomized allocations to n events E1, . . . , En and show
that, for each k = 1, . . . , n, the utility for agent i under each outcome in the event Ek is at least ui(Bi

k).
The expected utility of agent i is then at least ∑

n
k=1 Pr(Ek) · ui(Bi

k). If we can show Bi satisfies

n

∑
k=1

Pr(Ek) · ui(Bi
k) ≥

1

n
· ui(M ∪ D), (1)

then the ex-ante proportionality for agent i is proved.
To apply this technique, we need to carefully design the baseline allocation Bi for each agent

i and the partition to the n events such that Equation (1) holds. A natural idea is to design the
partition of the event space with Pr(E1) = · · · = Pr(En) = 1

n such that Equation (1) holds with
equality for any baseline allocation Bi. This technique is first illustrated in Section 4.3 where
m ≤ n. In the later part with general m, more sophisticated baseline allocations are constructed.

Minimal unmatchable group. Our algorithm starts by allocating indivisible goods, and the di-
visible goods are allocated by a water-filling process [Bei et al., 2021a]. To guarantee BoBW fair-
ness, the indivisible goods must be allocated carefully in order to satisfy some properties that en-
able the application of the baseline comparison technique described above. We have interpreted
the allocation problem as a matching problem in bipartite graphs and identified a key structure,
minimal unmatchable groups, that is crucial for BoBW fairness. Many other techniques in the bipar-
tite graph matching problem such as augmenting paths are also applied in our result. See Section 4.4
for more details.

4.2 Preparations

First of all, we justify that we can assume without loss of generality that there is only one divisible
good, denoted as d. We also let ui(d) := ui(D) = ∑

m
j=1 ui(dj) for each i ∈ N. Specifically, whenever

we say that an ǫ portion of d is allocated to an agent i, we refer to the scenario of allocating an ǫ

portion of each divisible good d1, . . . , dm to the agent, i.e., xi1 = · · · = xim = ǫ. In this way, the set
of m divisible goods can be treated as the single divisible good d. In the remainder of this section,
we thus assume that there is only one divisible good D = {d}.

Given an EF1 allocation of indivisible goods, Algorithm 1 of Bei et al. [2021a] specifies a way
to allocate the divisible goods and finally obtains an EFM allocation of the mixed goods. We refer
to this process of allocating divisible goods on top of an EF1 allocation of indivisible goods as the
water-filling process. During the water-filling process, agents may swap their bundles; however,
no bundle will be split. This is formally stated in the following lemma.

Lemma 4.2 (Bei et al. [2021a]). Given an EF1 allocation (Mi)i∈N of indivisible goods M, an EFM al-
location ((M

π(1), x1), . . . , (M
π(n), xn)) can be computed in polynomial time, where π is a permutation

of [n].

4.3 A Special Case where m ≤ n

We first consider the case m ≤ n, i.e., the number of indivisible goods is at most the number
of agents. This result will be used in later parts. Note, utility functions are not required to be
bi-valued.
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Algorithm 1: An ex-ante PROP and ex-post EFM randomized allocation when m ≤ n

Input: Agents N, mixed goods M ∪ D, and agents’ utility functions.
1 ∀ i ∈ [n], Ai ← ∅

2 Let π be a uniformly random permutation of N.
3 foreach agent i according to the order π do // Round-Robin.

4 g∗ ← arg maxg∈M ui(g)

5 Ai ← Ai ∪ {g
∗}, M← M \ {g∗}

6 Execute the water-filling process. // See Lemma 4.2.

7 return Allocation Aπ

Our algorithm is shown in Algorithm 1. The Round-Robin algorithm is adopted in the first step
to allocate the indivisible goods where the order of the agents π is sampled uniformly at random.
The water-filling process is then executed to allocate divisible goods and obtain allocation Aπ.
The required randomized allocation we find is {( 1

n! ,A
π)} and is denoted by R.

Theorem 4.3. In the mixed-goods setting where agents have additive utilities and m ≤ n, Algorithm 1
computes in polynomial time an integral allocation sampled from a randomized allocation that is ex-ante
proportional and ex-post EFM.

Proof. We can observe Algorithm 1 runs in polynomial time. By the property of Round-Robin, the
allocation after the foreach-loop is EF1. Then, by Lemma 4.2, the final output allocation is EFM;
hence, the randomized allocation is ex-post EFM.

To show the randomized allocation is ex-ante proportional, a key observation is that, for any
fixed partition (X1, . . . , Xn) of M ∪ D, if an agent has a probability of 1

n to receive each bundle Xi,

then her expected utility is exactly
ui(M∪D)

n . As the permutation of the agents is generated uni-

formly at random in line 2, the probability that an agent i is ranked k-th in the order is 1
n . Our

goal is to define a baseline allocation Bi = (Bi
1, . . . , Bi

n) for each agent i ∈ N where the value of the
bundle that agent i receives in the actual allocation when she is ranked k-th is no less than the k-th
bundle in the baseline allocation (i.e., Bi

k) regardless of the permutation of other agents.
Given a permutation π, we use A(π, k) to denote the bundle allocated to the agent ranked k-th

in the allocation output by Algorithm 1. Consider an arbitrary permutation π where agent i is
ranked k-th (i.e., π(k) = i), we will show that ui(A(π, k)) ≥ ui(Bi

k) where Bi = (Bi
1, . . . , Bi

n) is the
baseline allocation for agent i defined below.

Definition 4.4 (Baseline allocation). The baseline allocation Bi for agent i is obtained by

1. letting agent i partition the indivisible goods M into n bundles using the Round-Robin algo-
rithm (in particular, when m ≤ n, the t-th bundle (i.e., Bi

t) contains the t-th preferred good
for t ≤ m while the t-th bundle is empty for t > m), and

2. executing the water-filling process for the divisible goods according to agent i’s utility to
obtain an EFM allocation for the utility profile (ui, ui, . . . , ui).

The following properties of Bi are straightforward. First, each Bi
j contains at most one indi-

visible good (i.e., the j-th preferred indivisible good of agent i if j ≤ m, and no indivisible good
if j > m). Second, to guarantee EFM, the bundles containing some fraction of the divisible good
must have the same value under ui(·). Let x be that value. Third, due to EFM, ui(Bi

j) ≥ x for

each j ∈ [n].
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Next, we show that ui(A(π, k)) ≥ ui(Bi
k) for any permutation π with π(k) = i. It holds trivially

when Bi
k = ∅, or when Bi

k only contains one indivisible good as agent i will receive at least her
k-th preferred good during the Round-Robin phase of Algorithm 1. When Bi

k contains divisible
goods, we need to show that ui(A(π, k)) ≥ x (recall that x denotes the value of the bundles with
divisible goods in Bi). Suppose this is not the case, and ui(Ai) < x in the actual output allocation
A = (A1, . . . , An) where Ai = A(π, k). Let I be the set of indices of bundles in {A1, . . . , An}, each
of which is envied by agent i. It is worth noting that due to that allocation A satisfies EFM, those
bundles do not contain any divisible good. It is also easy to see x > ui(Ai) ≥ ui(Aj) for all j /∈ I .
Hence, we reach the following contradiction:

ui(M ∪ D) = ∑
j∈I

ui(Aj) + ∑
j/∈I

ui(Aj) <
|I |

∑
j=1

ui(Bi
j) + (n− |I|) · x ≤

n

∑
j=1

ui(Bi
j) = ui(M ∪ D). (2)

Finally, we have

ui(R) =
n

∑
k=1

∑
π:π(k)=i

ui(A(π, k))

n!
≥

n

∑
k=1

∑
π:π(k)=i

ui(Bi
k)

n!
=

n

∑
k=1

ui(Bi
k)

n
=

ui(M ∪ D)

n
,

which implies the allocation satisfying ex-ante proportionality.

Note that the above algorithm can hardly be generalized to the case with more than n indivis-
ible goods. Suppose we define the baseline allocation for each agent in the same way and Bi

k con-
tains divisible goods, then Equation (2) may fail. In more detail, bundle Aj, where j ∈ I may con-

tain more than one indivisible good. Hence, it may be that ∑j∈I ui(Aj) > ∑
|I |
j=1 ui(Bi

j). As a result,

Equation (2) does not necessarily hold, leading to the possibility of ui(A(π, k)) = ui(Ai) < ui(Bi
k).

4.4 General m with Bi-Valued Utilities

We now proceed to the general case with arbitrary numbers of goods. We only provide the high-
level ideas here, and the details are deferred to Appendix B.

Our algorithm allocates the indivisible goods iteratively and then allocates the divisible goods
by the water-filling process. At each iteration, we attempt to allocate each agent a large good of
value b. If we construct a bipartite graph G = (U, V, E) where U denotes the set of agents, V
denotes the set of indivisible goods, and an edge represents that an agent has value b to a good,
then we can find a maximum matching in G at each iteration. If a matching of size n (i.e., a perfect
matching) is found, we allocate each agent a “large good” and move on to the next iteration.

At some iteration, a perfect matching may no longer exist. We identify agents Z ⊆ U such that

1. Z cannot be fully matched to large goods; i.e., the Hall’s condition fails for Z: |Γ(Z)| < |Z|,
and

2. the remaining agents U \ Z can be fully matched; in addition, for each indivisible good that
has value b to an agent in U \ Z, it has value a to any agent in Z.

Intuitively speaking, agents in Z are “mostly finished” with their large goods, while a perfect
matching may continue to exist in the future iterations for agents in U \ Z. We call a minimal set
of agents Z satisfying the above requirements a minimal unmatchable group. Its precise definition
and the algorithm to find such a group are presented in Appendix B.1.
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At each iteration, agents Z and indivisible goods Γ(Z) are temporarily removed. We find a
perfect matching for agents in U \ Z, and allocate a “small good” to each agent in Z. In future
iterations, we recursively handle U \ Z. As a result, more and more agents (and the correspond-
ing “neighboring goods”) are removed. For agents that remain, we find a perfect matching and
correspondingly allocate each of them a “large good”; for agents that are removed, we allocate
each of them a “small good”. Thus, in each iteration, exactly n goods are allocated and each agent
receives exactly one good. We stop when the number of the remaining indivisible goods is less
than n.

Now, the number of unallocated indivisible goods is at most 2n − 2, including at most n −
1 goods that are temporarily removed by the algorithm (those that are neighbors of removed
agents) and at most n − 1 goods that remain after the last iteration. It is crucial that the current
partial allocation satisfies envy-freeness (which can be easily verified for each iteration based on the
property of minimal unmatchable groups). This allows us to reduce our problem to the case with
at most 2n− 2 indivisible goods, as we can fix the allocation of the indivisible goods allocated by
the above procedure. In Appendix B.2, we formally describe this procedure and the reduction to
m ≤ 2n− 2.

The most technical part comes to the handling of the case with m ≤ 2n− 2, which is described
in Appendix B.3. The case with m ≤ n has already been handled in Section 4.3. The case where
n < m ≤ 2n− 2 is handled with a similar idea of comparing to a baseline allocation but requiring a
substantial amount of additional effort. We again find a minimal unmatchable group Z of agents,
and agents in Z and in U \ Z are handled separately in the “last two rounds”. Sample a permu-
tation π uniformly at random. In the first round, agents with “higher priority” in Z receive “the
last large good”, while all agents in U \ Z receive large goods. In the second round, we allocate
agents with “higher priority” one good in the Round-Robin way. Finally, the water-filling process
is applied to allocate the divisible good. The analysis for ex-ante proportionality is the most tricky
part. Different baseline allocations are used for agents in Z and agents in U \ Z.

5 BoBW Fairness with Indivisible Goods:

Ex-Ante EF + Ex-Post EFX + Ex-Post fPO

In this section, we focus on the indivisible-goods setting and investigate the best-of-both-world
guarantee for both fairness and efficiency when the agents have bi-valued utilities. Here, we will
assume a > 0 for a clearer demonstration. For the case of a = 0, it can be reduced to the binary
setting and has been addressed [Babaioff et al., 2021]. Our main result is the following:

Theorem 5.1. In the indivisible-goods setting where agents have bi-valued utilities, Algorithm 2 computes
in polynomial time an integral allocation sampled from a randomized allocation that is ex-ante EF, ex-post
EFX and ex-post fPO.

Theorem 5 of Aziz et al. [2024a] presented an instance with two goods and two agents with
additive utilities to show that no randomized allocation is simultaneously ex-ante EF, ex-post EF1,
and ex-post fPO. Their impossibility result continues to hold when replacing ex-ante EF by ex-ante
PROP. It is worth noting that the instance consists of three possible values for the goods, which
can be considered in the settings allowing tri-valued utilities or personalized bi-valued utilities.
Their impossibility result indicates that the assumption of bi-valued utilities is necessary in order
to achieve best-of-both-world fairness and economic efficiency. For tri-valued or personalized bi-
valued utilities, Aziz et al.’s impossibility result holds for the weaker notions of ex-ante PROP and
ex-post EF1, with two agents and two goods. For bi-valued utilities, our Theorem 5.1 indicates
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that the best-of-both-worlds fairness can hold for the stronger notions of ex-ante EF and ex-post
EFX, with an arbitrary number of agents and goods. Our result shows a sharp contrast between
bi-valued and tri-valued utilities, and thereby completes the whole picture.

5.1 Technique Discussion and Detailed Descriptions of Algorithm 2

For bi-valued utilities, Garg and Murhekar [2023] devised a polynomial-time algorithm to find
an EFX and fPO allocation. Their algorithm updates the allocation through consecutive trans-
fers of goods along a path, a process seemingly challenging to implement for achieving an ex-
ante fairness guarantee. We instead draw inspiration from the MATCH&FREEZE algorithm of
Amanatidis et al. [2021], which computes an EFX allocation for bi-valued utilities in polynomial
time. It is worth noting that the MATCH&FREEZE need not return a PO allocation [Garg and Murhekar,
2023, Appendix A.2]. In what follows, we present the first polynomial-time algorithm which can
return an ex-ante EF, ex-post EFX, and ex-post fPO allocation when agents have bi-valued utilities.
When describing our Algorithm 2, we use the term “round” interchangeably with each execution
of the loop in line 4.

We first introduce three possible states for the agents: active, quiet and frozen. Initially, all agents
are active. When executing lines 13 to 19, if an agent i ∈ Zt is allocated a large good in line 14, she
will become frozen for the next ⌊b/a − 1⌋ rounds, indicating that she will not receive any good in
these ⌊b/a − 1⌋ rounds. After those rounds, she will become quiet. If i ∈ Zt does not receive a
large good at this round, she will directly become quiet in line 17. Intuitively, during the execution
of the loop in lines 4 to 21, an agent i can only accept small goods after she turns quiet, and the
count for these goods is recorded in ci. We also refer to active and quiet agents as unfrozen agents.

We now describe Algorithm 2. Lines 1-3 initialize the algorithm, where ci records the number
of reserved small goods for agent i, crucial for the market clear in line 26. The counter cnt records
the total number of reserved goods, precisely the sum of all ci’s during the loop (lines 4-21). A
permutation π is generated uniformly at random for subsequent allocations.

The main algorithm proceeds through a multi-round procedure in lines 4-21. In each round, we
first check whether the remaining goods in M are sufficient to match one to each unfrozen agent
in line 4. If this condition is met, we attempt to find a specific minimal unmatchable group Zt such
that all agents in Zt have value a over each good matched to agents in N \ Zt in lines 5-9.7 This is
to ensure the efficiency guarantee by allocating more large goods intuitively.

Given Zt, if |Zt| = 0, indicating that there exists a perfect matching between all agents in N
and the current set of goods in M, lines 10-11 are executed to add this matching directly. When Zt

is non-empty, we first find a maximum matching between Zt and Γ(Zt) using the augmenting
path technique in the reversed order of π (lines 13-17). All goods in Γ(Zt) can be allocated to some
agent from the construction of Zt (see Algorithm 4). The reversed order in line 13 ensures ex-post
EFX after the final allocation step in lines 22-25. We then find a perfect matching between N \ Zt

and M \ Γ(Zt) in lines 18-19 and match these goods accordingly. At the end of each round, we
maintain ci for each quiet agent i and the counter cnt, to allocate a good to those who have not
received a good at this round virtually (lines 20-21).

If there are not enough goods to allocate one to each unfrozen agent, the while-loop in line 4
is terminated and the final allocation step in lines 22-25 is executed. At this step, a large good
is allocated to the first |M| − cnt unfrozen agents under π as far as possible. Line 22 can adjust
the previous allocation for the remaining agents in N for a better efficiency guarantee. Line 25
updates the number of reserved small goods for an agent if she cannot be matched to any large

7The relevant concepts can be found in Appendix B.1.
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good. Line 26 clears the market based on the reserved number ci for each agent i, which allocates
these goods actually. We can then obtain the desired randomized allocation.

Throughout the algorithm, the randomization of our algorithm (the choice of π) only influ-
ences the allocation in lines 13-19 and 22-25, which would not affect the assignment of agents to
groups Zt (resp., goods to Γ(Zt)). This observation will be helpful for the analysis of the ex-ante
property.

5.2 Fairness

Before presenting the results, we first provide some properties of the allocation returned by Algo-
rithm 2. Let Nt and Mt be the corresponding set N and M at the beginning of round t.

Observation 5.2. For each agent i ∈ N,

• she receives exactly one good at each unfrozen round;

• if she belongs to some Zt which is removed from N in line 19 (assuming this corresponds
to round ri), she values each good allocated to her before round ri at b and each good in Aj

for j ∈ Nri \ Zt and Mri \ Γ(Zt) at a;

• if she does not belong to any Zt, she values each good allocated to her before the termination
of the while-loop in line 4 at b.

According to these observations, we first show that each output integral allocation by our
algorithm is EFX. To prove this, we adopt the induction to maintain the following property after
the matching at each round: for each agent i, this agent will not envy other agents j except for the
case that agents i and j are in the same Zt and agent i has never been frozen while agent j has been
frozen. Under this case, agent i does not envy j using the EFX criteria. Together with the analysis
for the final allocation step, we conclude the lemma.

Lemma 5.3. Every integral allocation returned by Algorithm 2 is EFX.

We then come to the ex-ante fairness guarantee of our algorithm. The idea is to prove any
envy from an agent i to another agent j under π can be eliminated by the gain under another
permutation π

′ which just exchanges i and j in π.

Lemma 5.4. Algorithm 2 returns an ex-ante EF allocation.

5.3 Efficiency

We leverage the Fisher market (relevant concepts in Appendix) to provide our efficiency guaran-
tee.

Lemma 5.5. Every integral allocation returned by Algorithm 2 is fPO.

Proof. To leverage Theorem C.1 for proving this, our goal is to find a proper price vector p for each
realized integral allocation A such that (A, p) is a market equilibrium of a Fisher market. Here,
we can directly set the budget ei for each agent i ∈ N as ∑g∈Ai

pg to ensure the market clear. It
suffices to find p and show that each agent i ∈ N only receives goods in MBBi.

Denote the set of agents not in any previous Zt by Nr . We assume m ≥ n here and the analysis
for the corner case when m < n is deferred to Appendix. Define the price vector p as follows:

• for each agent i in some Zt, we set pg = ui(g) for g ∈ Ai;
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• for each agent i ∈ Nr who receives both large and small goods, set pg = ui(g) for each
g ∈ Ai.

For the prices of the remaining goods, we will set them iteratively: if there exists one agent i
without pricing her goods such that some agent who has priced her goods before values some
good in Ai at b, we set pg = ui(g) for each g ∈ Ai. If there is no further pricing that can be
made, we set the price as a for each remaining good and we call each agent who owns these goods
low-price agent. We then need to show each agent i ∈ N only receives goods in MBBi.

For each agent i in some Zt, the ratio ui(g)/pg for each good g ∈ Ai is exactly 1. For each good
g which is allocated to some agent j in a Zt′≤t, if pg = uj(g) = a, this good is actually allocated
at line 26 and g is in Mri \ Γ(Zt), which is valued a by i from the second term in Observation 5.2,
whose ratio ui(g)/pg is at most 1. For each good g which is allocated to some agent j in Nri \ Zt,
we also have ui(g) = a from Observation 5.2. Thus, each agent i in some Zt only receives goods
in MBBi.

For each low-price agent, from the third term in Observation 5.2, all goods allocated to her in
the multi-round procedure must be large. Because this agent is not priced before the end of the
iteration, she receives no small goods. Since the goods she owns are priced at a which is the lowest
price we set and all goods in her bundle must be valued at b under her valuation, all goods in her
bundle must be in MBBi.

We then come to some agent i ∈ Nr who sets pg = ui(g) for each g ∈ Ai. The ratio ui(g)/pg

for each good g ∈ Ai is exactly 1. If she values a good g in some Aj, j ∈ N at b (thus j cannot be a
low-price agent otherwise it will be priced before the end from the iteration) and uj(g) = pg = a,
we can backward the iteration from agent i and finally achieve an agent i′ ∈ Nr who receives both
large and small goods from her perspective. This backward path along with the good presented
in the condition of the iteration is a feasible augmenting path at line 24 and agent i′ would not
receive a small good, which leads to a contradiction. This completes the proof for the case when
m ≥ n.

We are now ready to prove our main result in this section.

Proof of Theorem 5.1. From Lemmas 5.3,5.4 and 5.5, it suffices to show Algorithm 2 can terminate
in polynomial time. From the description of our algorithm, since |M| keeps decreasing which
bounds the total number of rounds by m and the only thing we need is to show lines 6-9 can be
terminated in polynomial time. From the construction of Zt according to Algorithm 4, if we keep
the perfect matching between N \ Zt and M \ Γ(Zt) by just replacing the good g′ by g, one edge
from j ∈ Zt to g′ is added, this leads to one of the following cases: either (1) one augmenting path
can be performed and the size of the maximum matching between N and M is increased by 1, or
(2) there is no additional augmenting path but |Γ(Zt)| is increased by at least 1. After at most n
times of the case (2) occurs, case (1) will occur. From the total number of the occurrences of (1) is
at most n, lines 6-9 can be terminated in O(n2) loops.

6 Conclusion

In this paper, we have studied the best-of-both-worlds fairness for indivisible-goods and mixed-
goods allocations. With indivisible goods, we provided polynomial-time algorithms that achieve
ex-ante EF and ex-post EFX allocation for two agents and ex-ante EF, ex-post EFX, and ex-post fPO
for n agents with bi-valued utilities. With mixed goods, we showed polynomial-time algorithms
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that achieve ex-ante EF and ex-post EFM allocation for two agents and ex-ante PROP and ex-post
EFM for n agents with bi-valued utilities.

In future research, it would be interesting to further strengthen the results in this paper, the
most intriguing of which is perhaps the (in)compatibility between ex-ante EF and ex-post EFM in
the mixed-goods setting. For mixed goods, another interesting direction is to extend BoBW-fair
study to maximin share (MMS) guarantee [Bei et al., 2021b].
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Algorithm 2: Bi-valued indivisible goods: Ex-ante EF, ex-post EFX, and ex-post fPO

Input: Agents N, indivisible goods M, and agents’ utility functions.
1 ∀ i ∈ [n], Ai ← ∅, ci ← 0
2 t← 1, cnt← 0
3 Uniformly generate a random permutation π of the agents.
4 while |M| ≥ [# unfrozen agents] + cnt do

5 Find the minimal unmatchable group Zt among N and M according to Algorithm 4.
6 while |Zt| > 0 and there exists i ∈ N \ Zt and g ∈ Ai s.t. uj(g) = b for an agent j ∈ Zt do

7 Let g′ ∈ M be the good matched to agent i in a perfect matching between N \ Zt

and M \ Γ(Zt).
8 M← M ∪ {g} \ {g′}, Ai ← Ai ∪ {g

′} \ {g}
9 Find the minimal unmatchable group Zt among N and M via Algorithm 4.

10 if |Zt| = 0 then

11 Find a perfect matching between N and M. For each agent i ∈ N, add her matched
good to Ai. Remove the matched goods from M.

12 else
13 foreach i ∈ Zt in the reversed order of π do

14 if i can find an augmenting path to a good in Γ(Zt) then

15 UpdateAπ according to this path.
16 Freeze i for the next ⌊b/a− 1⌋ rounds.

17 else Set i as quiet.

18 Match the corresponding good to each agent in N \ Zt in a perfect matching
between N \ Zt and M \ Γ(Zt).

19 N ← N \ Zt, M← M \ Γ(Zt), t← t + 1

20 cnt← cnt + [# quiet agents]
21 ci ← ci + 1 for each quiet agent i.

22 Let M′ ← M ∪
⋃

i∈N Ai and match each g ∈ Ai for some i ∈ N to a copy of agent i initially.
23 foreach agent i in the first |M| − cnt of the order π after removing the frozen agents do

24 if i can find an augmenting path to a good in M′ then UpdateAπ according to this
augmenting path.

25 else ci ← ci + 1

26 Allocate the remaining goods arbitrarily based on ci.
27 return Allocation Aπ
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Algorithm 3: An ex-ante EF and ex-post EFX randomized allocation for two agents

Input: Agents N = [2] and indivisible goods M
1 For each i ∈ [2], Ai ← LocalSearch(∅, M, ui)

2 if ∃ i ∈ [2] such that ui(Ai
1) = ui(Ai

2) or u3−i(Ai
1) ≥ u3−i(Ai

2) then

3 return {(1,Ai)} where agent 3− i picks her preferred bundle first

4 while ∃ i ∈ [2] such that u3−i(Ai
2)− u3−i(Ai

1) < u3−i(A3−i
2 )− u3−i(A3−i

1 ) do

5 A3−i ← LocalSearch(Ai
1, Ai

2, u3−i)

6 if ∃ j ∈ [2] such that uj(A
j
1) = uj(A

j
2) or u3−j(A

j
1) ≥ u3−j(A

j
2) then

7 return {(1,Aj)} where agent 3− j picks her preferred bundle first

8 if A3−i is also EFX under ui then

9 Ai ← A3−i

10 return {(0.5,A1), (0.5,A2)} where agent 3− i picks her preferred bundle first in the

realized allocation Ai for each i ∈ [2]

11 return {(0.5,A1), (0.5,A2)} where agent 3− i picks her preferred bundle first in the realized

allocation Ai for each i ∈ [2]

12 Function LocalSearch(A, B, u):

13 if u(A) > u(B) then Swap A and B.
14 while ∃ g ∈ B such that u(A ∪ {g}) < u(B) do

15 g← arg maxg′∈B and u(A∪{g′})<u(B) u(g′)

16 A← A ∪ {g}, B← B \ {g}
17 if u(A) > u(B) then Swap A and B.

18 return (A, B)

A Omitted Proofs in Section 3

A.1 Proof of Lemma 3.1

The termination condition ensures that in the output allocation (A′, B′), we have u(A′) ≤ u(B′)
and for every good g ∈ B′ we have u(A′ ∪ {g}) ≥ u(B′), which meets the EFX condition. It
suffices to show this subroutine can terminate in polynomial time.

Without loss of generality, we assume u(A) ≤ u(B) in the initial allocation (A, B). When
executing line 16, we choose the item g ∈ B with the highest value according to u such that
u(A∪ {g}) < u(B) and move it from B to A. Before the next swap step, both the utility difference
between the two bundles and the size of B are decreasing. If the swap step (line 17) is never
executed, the number of steps is upper bounded by m. If one swap step (line 17) is executed,
assume the last item moved from B to A is g. This indicates that, before moving the item g from
bundle B to bundle A, we have u(B)− u(A) > u(g) and u(A) + u(g) > u(B)− u(g) from the
conditions in lines 14 and 17, so the utility difference between the two bundles decreases from
a value larger than u(g) to a value less than u(g) after moving the item g. Thus, during the
whole subroutine, the utility difference keeps decreasing, and an item g′ will not be further moved
between the two bundles if u(g′) ≥ u(g). The values of the items that have been moved are at
least u(g) (due to line 15), so an item can be moved between the two bundles at most once. The
overall time complexity is bounded by O(m log m), where we may first sort the items according to
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u, and then perform the above operations in linear time.

A.2 Proof of Theorem 3.2

If the allocation is returned in line 10, this is ex-post EFX from Lemma 3.1 and the condition in
line 8, and trivially ex-ante EF since we only exchange two bundles in these two realizations. If
the allocation is returned in lines 3 and 7, either the agent i in line 2 or the agent j in line 6 treats
two bundles equally or the other agent will choose the bundle which is less valued by this agent.
In both cases, this is exactly EF, in both ex-ante and ex-post senses. If the allocation is returned in
line 11 (which also means the conditions in lines 2 and 6 fail), from Lemma 3.1, both A1 and A2

are EFX if for each i ∈ [2], agent 3− i picks her preferred bundle first in Ai. Because condition in
line 4 is violated, for each agent i ∈ [2], we have ui(Ai

2) − ui(Ai
1) ≤ ui(A3−i

2 ) − ui(A3−i
1 ), so the

loss of ui(Ai
2)− ui(Ai

1) for agent i under Ai is upper bounded by the gain of ui(A3−i
2 )− ui(A3−i

1 )
under A3−i. Thus, this randomized allocation is ex-ante EF and ex-post EFX. It suffices to show
that this algorithm can terminate in polynomial steps, where we adopt a similar analysis.

From the condition at line 4 and the monotonic property in the proof of Lemma 3.1, after
executing line 5, the utility difference between the two bundles in A3−i under u3−i decreases (to
see this, Lemma 3.1 implies that the utility difference between the two bundles in the updated
A3−i is weakly smaller than the utility difference of the two bundles in Ai under u3−i, and the
condition at line 4 implies that the utility difference between the two bundles in A3−i strictly
decreases after executing line 5). We first notice that line 13 cannot be executed in this call of the
subroutine because of the failure of the conditions at line 2 or the previously executed line 6. If
there is no swap step (line 17) executed in this call of the subroutine, since the original allocation
(Ai

1, Ai
2) is EFX under ui, either ui(A3−i

1 ) ≥ ui(A3−i
2 ) and then meets the condition at line 6, or

the allocation A3−i is also EFX for agent i. In both cases, the algorithm terminates. Thus, we then
assume some swap step is executed in this call of subroutine, which means that when the item last
transferred from one bundle to another under u3−i is g, the difference between the utilities of two
bundles in A3−i under u3−i is from a value larger than u3−i(g) to a value less than u3−i(g).

The difference for each Ai, i ∈ [2] under ui is decreasing during the whole process before
terminating. Similar to the analysis in Appendix A.1, each item that has been moved between
the two bundles will not be further moved by the same agent. Thus, the total number of move
operations is bounded by 2m. The overall time complexity is O(m log m), where we may first
sort the items according to u1 and u2 respectively in O(m log m), and then perform the above
operations in linear time. For the execution of line 8, we can use a heap to maintain the item with
the smallest utility in O(log m) time per operation. Since the total number of executions of this
line can also be bounded by the total number of move operations, which is O(m), the overall time
complexity for this line remains O(m log m).

A.3 Proof of Theorem 3.3

We analyze the procedure described before the statement of this theorem. In the first case where
a single integral allocation is given (lines 3 and 7), this is an EF allocation and thus ex-ante EF and
ex-post EFM. We then assume there exist two allocations A1 and A2 where Ai is EFX under ui

for each i ∈ [2]. If there exists an agent i ∈ [2] such that the good d is in bundle Ai
2, from the

ex-post EFX property, we have ui(Ai
2) ≥ ui(Ai

1) and ui(Ai
2) − ui(d) ≤ ui(Ai

1), thus there exists
an α ∈ [0, 1] such that agent i treats these two bundles equally after transferring an α-fraction of
the divisible good d. Thus, let agent 3− i pick her preferred bundle first and we achieve an EF
allocation.
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Algorithm 4: Finding minimal unmatchable group

Input: Agents N, indivisible goods M, and agents’ utility functions.
1 Construct a bipartite graph G = (N, M, E) where (i, g) ∈ E if ui(g) = b.
2 Find a maximum matching on G.
3 Let Z be the set of all reachable agents from all unmatched agents through alternating

paths.
4 return The minimal unmatchable group Z

For the last case where the good d is in the bundle with smaller utility for both agents, since
each integral allocation in the support is EFX and there is no divisible good in the better bundle,
this can also imply EFM.

B Omitted Details in Section 4

In this section, we provide the remaining details for the proof of Theorem 4.1.

B.1 Finding the Minimal Unmatchable Group

In this section, we define the notion of minimal unmatchable group of agents and describe an algo-
rithm for finding such a group. These will be used in the next two sections.

A bipartite graph G = (U, V, E) is constructed, where U denotes the set of agents, V denotes
the set of indivisible goods, and (i, g) ∈ E if ui(g) = b. We use Γ(S) for S ⊆ U to denote the
set of neighbors of S in G. Given a bipartite graph and a matching, an alternating path and an
augmenting path are defined as follows.

Definition B.1 (Alternating path in a bipartite graph). Given a matching in a bipartite graph, an
alternating path is a path that begins with an unmatched agent or an unmatched good and in which
the edges belong alternately to the matching and not to the matching.

Definition B.2 (Augmenting path in a bipartite graph). An augmenting path is an alternating path
starting from an unmatched agent (resp., good) and terminating at an unmatched good (resp.,
agent).

Definition B.3 (Perfect matching in a bipartite graph). Given a bipartite graph G, a perfect matching
with respect to a set of agents U′ ⊆ U and a set of goods V ′ ⊆ V is a matching that matches each
agent in U′ to a unique good in V ′.

Based on the bipartite graph G, we define the minimal unmatchable group in Definition B.4.

Definition B.4 (Minimal unmatchable group). A group of agents Z is said to be a minimal unmatch-
able group if G = (U, V, E) contains a perfect matching between U \ Z and V \ Γ(Z) and there is
no subset S ⊆ Z such that

• S has a perfect matching in the bipartite graph, and

• there is no edge between each agent i ∈ Z \ S and each good matched to S.

Intuitively, for each agent belonging to the minimal unmatchable group Z, her value to each
item except Γ(Z) is a. If there exists a perfect matching for all agents, Z = ∅.
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Algorithm 5: Partially allocating indivisible goods

Input: Agents N, indivisible goods M, and agents’ utility functions.
1 ∀ i ∈ [n], A′i ← ∅

2 Let T ← ∅ be the set of agents that do not have a perfect matching.
3 Let Y ← ∅ be Γ(T) among the unallocated goods.
4 cnt← 0, t← 1
5 while |M| ≥ cnt + n do

6 Find the minimal unmatchable group Zt among N \ T and M according to
Algorithm 4.

7 T ← T ∪ Zt, Y ← Y ∪ Γ(Zt)
8 M← M \ Γ(Zt) and update the bipartite graph.
9 if |M| < cnt + n then break

10 Find a perfect matching between N \ T and M, and assume each agent i ∈ N \ T is
matched to gi′ ∈ M.

11 ∀ i ∈ N \ T, Ai ← Ai ∪ {gi′}
12 Remove the matched items from M.
13 Update the bipartite graph.
14 cnt← cnt + |T|, t← t + 1

15 t← t− 1
16 foreach i ∈ [n] do

17 Arbitrarily allocate t− |Ai| goods from M to Ai, and remove the allocated goods
from M.

18 Let V ← M
19 return Partial allocation A′, and unallocated indivisible goods Y ∪V

A straightforward algorithm to find the minimal unmatchable group is to iteratively add the
minimal set of agents that violates Hall’s condition into the group. We also provide an alternative
approach in Algorithm 4.

B.2 Reduction to m ≤ 2n− 2

Our first step to handle the general case is to allocate the indivisible goods so that there are at
most 2n− 2 indivisible goods that remain unallocated after this step, and the partial integral allo-
cation satisfies envy-freeness. The pseudocode is shown in Algorithm 5.

In each iteration of the algorithm, we run Algorithm 4 to find the minimal unmatchable group Z.
If Z = ∅, we directly find a perfect matching for all agents and allocate the goods accordingly.
Otherwise, Z and Γ(Z) (i.e., the neighbors of Z) are removed from the bipartite graph. We find a
perfect matching between the remaining agents and the remaining goods, which, by the definition
of the minimal unmatchable group, is guaranteed to exist. During the process, a variable cnt is
maintained to indicate how many additional indivisible goods should be allocated after each iter-
ation to ensure that each bundle contains the same number of indivisible goods. The termination
condition of the while-loop in lines 5 and 9 ensures that the goods will not run out. After the
number of goods is not enough to guarantee the same size of each bundle for the next iteration,
we terminate the process and obtain a partial allocation.

In the following part, we use A′ = (A′1, . . . , A′n) to denote this partial allocation, T to denote
the set of all the unmatchable agents, and Y to denote the neighbors of T that are removed from
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M during the algorithm.

Lemma B.5. |Y ∪V| ≤ 2n− 2.

Proof. For each minimal unmatchable group Z, we have Z > Γ(Z); otherwise, Hall’s condition is
satisfied, and there is a perfect matching between Z and Γ(Z). Hence, |Y| < |T| ≤ n. Moreover,
the number of goods allocated in line 16 is equal to cnt. Hence, the number of goods in V is less
than n guaranteed by the termination condition of the while-loop, as desired.

Lemma B.6. Algorithm 5 returns a partial integral allocation that is envy-free.

Proof. First, Algorithm 5 ensures that each agent receives the same number of goods. For each
agent in N \ T, envy-freeness is guaranteed as she only receives goods of value b. For each
agent i ∈ T, assume she is added to T at round ti, then each good she receives before round ti

has value b to her, and each good allocated to any agent after round ti (including ti) has value a
to her. Hence, ui(Ai) = (ti − 1) · b + (t − ti + 1) · a while ui(Aj) ≤ (ti − 1) · b + (t − ti + 1) · a,
meaning that agent i is envy-free in the partial allocation.

We have already shown that the partial integral allocation A′ satisfies EF and thus PROP over
goods M′ =

⋃n
i=1 A′i. We observe that if there is a randomized allocation A over (M \M′)∪D that

satisfies ex-ante PROP and ex-post EFM, then we can construct the allocation over M where each
agent i receives bundle Ai deterministically and the corresponding bundle in Aj with probability
pj which satisfies ex-ante PROP and ex-post EFM. This reduces our problem to the case with at
most 2n− 2 indivisible goods.

In the next section, we assume there are n agents, at most 2n− 2 indivisible goods, and a single
divisible good {d}.

B.3 Allocating Remaining Goods

As mentioned, we have assumed m ≤ 2n− 2. The case where m ≤ n has already been handled in
Section 4.3. Therefore, we assume n < m ≤ 2n− 2 below.

Step 1: We run Algorithm 4 on N and M to find the minimal unmatchable group. Denote the
group we find by T and their neighbors Γ(T) by Y. This guarantees the existence of a perfect
matching between N \ T and M \ Y. We then construct a bipartite graph G = (N, M, E) for the
agents and the indivisible goods where (i, g) ∈ E if ui(g) = b, and find a random permutation π

of the agents. We denote the first k agents in π by π[: k].
We adopt a similar idea as in Round-Robin. As n < m ≤ 2n− 2, each agent of π[: m− n] will

receive two goods, and the other agents will receive one good. Meanwhile, we execute some extra
operations to ensure the allocation satisfies ex-ante PROP. Next, we describe how to allocate the
indivisible goods for agents in N \ T (resp., T) in Step 2 (resp., Step 3).

Step 2: First, we decide the allocation of indivisible goods for agents in N \ T. Consider the
induced subgraph G′ = (N \ T, M \Y, E′).

First phase: Find a perfect one-to-one matching in G′ and allocate the goods accordingly. Note
that the matching is fixed regardless of π.

Second phase: Following the order in π, iteratively let each agent of π[: m− n]∩ (N \ T) receive
an unallocated good with the highest value.
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Step 3: Next, we decide the allocation of indivisible goods for agents in T. Each agent receives
exactly one good in the first phase and the remaining goods are handled in the second phase.

First phase: We handle the agents in T sequentially according to their order in π. Similar to
Step 2, let each agent receive a good of value b if there is still such a good available and add this
edge to the matching. Otherwise, find an augmenting path and update the goods along the path
as well as the matching. If there is no augmenting path, we skip the current agent and let her
receive an arbitrary good after finishing executing the aforementioned process to all of the agents
in T.

Second phase: After each agent in T receives a good, we further allocate an unallocated indivis-
ible good of M to each of π[: m− n] ∩ T.

Step 4: Execute the water-filling process for divisible goods and obtain the allocation Aπ. The
randomized allocation we obtain is {( 1

n! ,A
π)} and is denoted byR.

In what follows, we show that the randomized allocation R is ex-ante PROP, and consider the
agents in T and in N \T in Lemmas B.8 and B.9 separately and respectively. We start with a lemma
which will be used in the proof of Lemma B.8.

Lemma B.7. The indivisible goods in Y are fully allocated after the first phase in Step 3.

Proof. Consider the induced subgraph G∗ = (T, Y, E∗). Assume there exists a good g ∈ Y being
unallocated after the first phase. We collect all the alternating paths starting from g and denote
the set of vertices belonging to T on the paths as T1, where T1 6= ∅ since g ∈ Γ(T). We argue
that each agent in T1 is matched in G∗; otherwise, there is an augmenting path, and the allocation
should have been updated during the first phase of Step 3. Every agent in T \ T1 values each good
matched to agents T1 at a as we have already found all the alternating paths starting from g. Let
S ( T1 and S 6= ∅. Then, S is an evidence demonstrating that T is not the minimal unmatchable
group (see Definition B.4), a contradiction.

Lemma B.8. The randomized allocation R is ex-ante PROP for agents in T.

Proof. We define baseline allocation as in Definition 4.4, and adopt a similar analysis as in Theo-
rem 4.3. For any agent i ∈ T, as there is no edge from T to M \Y and |Y| < |T| ≤ n, the number of
goods valued at b by agent i is at most n. Hence, each bundle Bi

k where k ∈ [n] in the baseline allo-
cation Bi contains at most one indivisible good of value b and the number of bundles that contain
two indivisible goods with values b and a respectively is maximized according to the property of
Round-Robin.

We use A(π, k) to denote the bundle allocated to the agent ranked k-th in the permutation π

in the allocation output by our algorithm. Consider an arbitrary permutation π where agent i is
ranked k-th (i.e., π(k) = i), we will show that ui(A(π, k)) ≥ ui(Bi

k). Since an agent in π[: m− n]
receives two goods and otherwise one good in our algorithm, the number of indivisible goods
received by agent i is the same as that in the baseline allocation before the water-filling process
with whichever index in π. In addition, she will receive a good with value b if Bi

k contains one
good. Hence, ui(A(π, k)) ≥ ui(Bi

k) if Bi
k contains only indivisible goods.

If Bi
k contains a fraction of the divisible good D, let x = ui(Bi

k). Denote the actual output
allocation by A = (A1, . . . , An), and denote the set of bundles that only contain indivisible goods
in the actual allocation A by S ⊆ A. By Lemma B.7 and according to the first phase of Step 3,
each agent in T receives at most one good from Y, so no bundle in the actual allocation contains
two indivisible goods both valued at b to agent i. As the number of bundles with the maximum
possible value of indivisible goods (which is b + a) is maximized in Bi, we have ∑Aj∈S ui(Aj) ≤
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∑
|S|
j=1 ui(Bi

j), which holds even if we do not consider all the divisible goods in
⋃|S|

j=1 Bi
j. Therefore, if

ui(Ai) = x′ < x in the actual allocation A, we will reach the following contradiction

ui(M ∪ D) = ∑
Aj∈S

ui(Aj) + ∑
Aj /∈S

ui(Aj) ≤ ∑
Aj∈S

ui(Aj) + (n− |S|) · x′

<

|S|

∑
j=1

ui(Bi
j) + (n− |S|) · x ≤

|S|

∑
j=1

ui(Bi
j) +

n

∑
j=|S|+1

ui(Bi
j) = ui(M ∪ D),

where the first inequality holds as each bundle Aj /∈ S that contains divisible goods is valued at

most x′ to agent i guaranteed by EFM, and the third inequality holds as ui(Bi
j) ≥ x if Bi

j contains

no divisible good.
As the permutation is generated uniformly at random, the lemma concludes following the

same analysis for ex-ante PROP as in Theorem 4.3:

ui(R) =
n

∑
k=1

∑
π:π(k)=i

ui(A(π, k))

n!
≥

n

∑
k=1

∑
π:π(k)=i

ui(Bi
k)

n!
=

n

∑
k=1

ui(Bi
k)

n
=

ui(M ∪ D)

n
.

Lemma B.9. The randomized allocation R is ex-ante PROP for agents in N \ T.

Proof. Different from the proof in Lemma B.8 above, a bundle in the actual allocation A may
contain two indivisible goods both valued at b to agent i for some i ∈ N \ T. We thus define the
baseline allocation for agent i in a different way below.

Definition B.10 (Baseline allocation Bi for agent i ∈ N \ T). The baseline allocation Bi for agent i ∈
N \ T is obtained by

1. letting each bundle contain one distinct good that is matched during the first phases of
Steps 2 and 3 (note that there are n goods matched during the first phases of Steps 2 and 3,
so each bundle can contain exactly one good);

2. arranging the bundles in descending order according to agent i’s utility;

3. letting agent i allocate remaining indivisible goods by Round-Robin; and

4. executing the water-filling process for the divisible goods according to agent i’s utility.

Assume that agent i is ranked k-th in the permutation π, and denote the actual output alloca-
tion byA = {A1, . . . , An}, where Ai is also denoted by A(π, k) similar to Lemma B.8. The number
of the indivisible goods in Bi

k equals to that she receives in the actual allocation before the water-
filling process. In the first phase of Step 2, agent i will receive a good with value b, which is no
less than the value of the first good added to Bi

k (as the value is at most b). If the second good
added to Bi

k is also valued at b to agent i, then the good she receives in the second phase of Step 2
also has value b by Round-Robin. Therefore, if Bi

k contains only indivisible goods, the property
ui(Ai) ≥ ui(Bi

k) holds, as agent i’s value to her bundle only increases during the water-filling
process.

We provide a further observation of the indivisible goods in the two allocations before the
water-filling process. Denoted by Āj and B̄i

j the j-th bundles that contain only the indivisible

goods before the water-filling process for j ≤ n. The first good added to Āj and B̄i
j is identical.

Guaranteed by the second and third steps when constructing the baseline allocation, the possible
number of bundles with two goods both with value b to agent i is maximized, i.e., there is no
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actual allocation such that the bundles with two goods with value b is strictly larger than that in
the baseline allocation. Similarly, subject to the above property, the possible number of bundles
with two goods with values a and b respectively is maximized. This allows us to obtain that for

any k′ ≤ n, ∑
k′

j=1 ui(B̄i
j) ≥ ∑Āj∈S

ui(Āj) for any set S of bundles where |S| = k′.

We similarly denote x = ui(Bi
k) if Bi

k contains a fraction of the divisible good. Denote the set

of bundles without any divisible good by S . From the above analysis, we have ∑
k′

j=1 ui(Bi
j) ≥

∑Āj∈S
ui(Aj). Then, if ui(Ai) = x′ < x, we similarly obtain the contradiction that

ui(M ∪ D) = ∑
Aj∈S

ui(Aj) + ∑
Aj /∈S

ui(Aj) ≤ ∑
Aj∈S

ui(Aj) + (n− |S|) · x′

<

|S|

∑
j=1

ui(Bi
j) + (n− |S|) · x ≤

|S|

∑
j=1

ui(Bi
j) +

n

∑
j=|S|+1

ui(Bi
j) = ui(M ∪ D),

We have shown that ui(A(π, k)) ≥ ui(Bi
k) holds for each π and i such that π(k) = i. There-

fore, for each π, each agent will receive no less value in the actual allocation than in the baseline
allocation. Following the same analysis in Lemma B.8, ex-ante PROP is guaranteed.

We are now ready to establish Theorem 4.1.

Proof of Theorem 4.1. Lemmas B.8 and B.9 together show the randomized allocation is ex-ante PROP,
and it is also ex-post EFM guaranteed by the fact that each partial allocation containing only indi-
visible goods is EF1 and by Lemma 4.2. Finally, it is straightforward that each part of our algorithm
runs in polynomial time. This concludes Theorem 4.1.

Remark. The above algorithm can be generalized to the case where agents have personalized bi-
valued utilities (the value a and b of each agent are different) to indivisible goods and no constraint
to divisible goods.

C Omitted Details in Section 5

C.1 Proof of Lemma 5.3

We can verify the required property after each round and prove this by induction. The initial
empty allocation is trivially EFX. (Recall that we use Nr and Mr to denote the corresponding set N
and M encountered in Algorithm 2 at the beginning of its round r.) At the next round r, if we
cannot find a perfect matching between Nr and goods Mr (lines 13-19), there exists a non-empty
minimal unmatchable group Zt. For each agent i ∈ Nr \ Zt at this round, since she can still receive
a large good and every agent can receive at most one good per round, there is no envy from agent i.

For each agent i ∈ Zt, if she is frozen in this loop, since she will be only frozen for the next
⌊b/a − 1⌋ rounds, the total utility accumulated by any other agent’s bundle during these frozen
rounds is upper bounded by a + ⌊b/a − 1⌋ · a ≤ b, from the second term in Observation 5.2.
Thus, each frozen agent will not envy others during the frozen rounds. If an agent i ∈ Zt is not
frozen (in other words, becomes quiet), she will not envy the agents not in Zt or the agents in Zt

without freezing since these agents can only receive a good in Mr \ Γ(Zt), which is valued at a
under ui. For some agent j ∈ Zt is frozen in this round, if all goods allocated to j until now are
valued at b by agent i, agent i will not envy j after removing the last good from the second term
in Observation 5.2. Otherwise, agent i will not envy j since there is exactly one small good in i’s
bundle and there is at least one small good in j’s bundle under ui.
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For each agent i not in Nr , i.e., a quiet agent in a previous Zt′ , it does not envy the agents not
in Zt′ and the agents in Zt′ without freezing before because all agents receive a small good from
i’s perspective. Compared to some other quiet agent j in Zt′ who has been frozen before, after
eliminating one small good in j’s bundle, we have b ≤ a + ⌊b/a− 1⌋ · a + a, which can eliminate
the envy. The term a + ⌊b/a− 1⌋ · a represents the utility during the frozen rounds of j earned by
i and the last a represents the utility at this round.

We then come to the second case where we can find a perfect matching between Nr and goods
Mr (Lines 10-11). For each agent i in Nr, since it receives large goods at all rounds, there is no envy
from her. For each agent i in some previous Zt, the case is similar to the case above.

From the induction, it suffices to show we can still maintain EFX when allocating the remaining
goods at Lines 22-25. Because every agent i does not envy agent j except for one special case as
stated in the property we maintain, the envy between these agents can be eliminated by removing
the good allocated at this final step. The remaining is to show the case where i and j are in the
same Zt and agent i has never been frozen but agent j has been frozen before. If the value of agent
i over the good g allocated to agent j at round rj is a, the envy can be eliminated after removing
the good allocated at this final step since there is no envy from i to j during the loop. Otherwise, j
must be before i in the reversed order of π. This is because if i is before j in the reversed order of
π, there must exist an augmenting path from i to the good g (from the fact that i can directly take
the good g and we keep the remaining allocation to reach a matching with a larger size before the
position of j) and then i would be frozen. Thus, i will pick a good before j at this final step from π,
which means the envy from i to j can be eliminated after removing the good received by j at this
final step (if it exists).

C.2 Proof of Lemma 5.4

For each pair of two agents i and j except for the case that agent i and agent j are in the same Zt

and agent i has never been frozen while agent j has been frozen, from the maintained property as
stated before Lemma 5.3, it suffices to show the allocation at the final step (Lines 22-25) can ensure
ex-ante EF. If agent i envies agent j in some allocation A≈, either (1) j receives a good g but i does
not at the final step or (2) j receives a good g valued b by i but i only receives a small good at the
final step. If we compare it to the allocation under π

′ which only exchanges i and j in π, the envy
in the first case can be eliminated because at the final step, j will get nothing and i can receive a
good with a weakly larger utility than ui(g) through an augmenting path, where the worst case is
that agent i directly receives g and the remaining allocation is kept.

For the second case (this implies that j is before i in π and j also values g at b), the only thing
we need to show is that agent i and j cannot both get a large good from i’s perspective at the final
step under π

′. Here, we assume i is at position p(i) and j is at position p(j) in π. We have p(i) > p(j).
If the above situation happens and assume i and j receive g(i) and g(j) under π

′, we can find an
augmenting path to let agent i receive a large good under π, which leads to a contradiction. The
way to find such a path is as follows.

Since there is a matching for π
′ by replacing the matching edge (j, g) by (i, g) in π, the size of

the maximum matching before position p(i) in π is upper bounded by the size of that before p(i)

in π
′. If j values g(j) at b, this violates the maximality of the matching up to position p(i) in π since

the size should be equal in both maximum matchings up to position p(i) in π and π
′. If j values

g(j) at a, we then can get the size of the maximum matching before position p(i) in π is exactly
equal to the size of that before position p(i) in π

′ and j values g(i) at b. We then can replace the
allocation before position p(i) in π by that before position p(i) in π

′ and then agent i can receive g′′

in π, which violates the maximality of the matching up to position p(i) in π. Both cases lead to a
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contradiction, which finishes the proof for this case.
We then come to the exceptional case: agent i and j are in the same Zt and agent i has never

been frozen but agent j has been frozen. If the value of agent i over the good g allocated to j at
round rj is a, there is no envy before the final step and this case can be solved similarly as in the
above analysis.

Otherwise, we assume the generated permutation is π. We consider another permutation π
′

which only exchanges the positions of i and j in π. Since the ex-ante guarantee at the final step
has been shown in the above situation, it suffices to show the ex-ante EF is also satisfied before
the final step. Because agent j is frozen under π and agent i values the good g at b, agent i will be
frozen under π

′ by directly replacing the agent j in π. If agent i is frozen and agent j is not frozen
under π

′, then from i’s perspective, the differences between the bundles of agent i and j under π

and π
′ are the same, which ensures the ex-ante EF. It suffices to show that agents i and j cannot be

frozen simultaneously under π
′.

If both agents i and j are frozen under π
′, we can utilize the similar argument over the max-

imality of the matching before (or up to) the position of i in π to show that i can be also frozen
under π, which violates the assumption. This completes the proof.

C.3 Descriptions of Fisher Market

In a Fisher market, we are given a set of n agents denoted by N and a set of m divisible goods
denoted by M. For each agent i ∈ N, an additive utility function ui and a budget ei ≥ 0 are given.
Given a fractional allocation X with a price vector p over M, the spending of an agent i under (X, p)
is ∑g∈M pgXig. We then define the maximum bang-per-buck (MBB) ratio αi := maxg∈M ui(g)/pg and
the MBB-set MBBi := {g ∈ M: ui(g)/pg = ffi} for each agent i ∈ N.

A market equilibrium (X, p) is a fractional allocation X with a price vector p over M which
satisfies:

• the market clears, i.e. ∑i∈N Xig = 1 for each good g ∈ M;

• the budget is fully spent, i.e., ∑g∈M pgXig = ei for each agent i ∈ N;

• each agent i ∈ N only receives goods in MBBi.

Theorem C.1 (First Welfare Theorem [Mas-Colell et al., 1995]). If (X, p) is a market equilibrium of a
Fisher market, X is fPO.

C.4 Proof of Lemma 5.5 when m < n

We now come to the corner case when m < n. The main difference in this case is the price setting
for low-price agents in the above analysis, where it is possible that there exists a low-price agent
receiving only a small good. Thus, we need to specify the price separately for this case.

We define the price vector p in the following way: for each agent i receiving a small good g,
we set pg = a. We then set the prices of the remaining goods iteratively: if there exists one agent
i without pricing her good g such that some priced agent values g at b, we set pg = b. If there is
no further pricing can be made, we set the price as a for each remaining good and call each agent
who owns these goods low-price agent, correspondingly. We can then follow a similar proof as
the case above to prove this.

28


	Introduction
	Our Results
	Related Work

	Preliminaries
	Two Agents
	BoBW Fairness with Mixed Goods: Ex-Ante PROP + Ex-Post EFM
	Technical Overview
	Preparations
	A Special Case where m n
	General m with Bi-Valued Utilities

	BoBW Fairness with Indivisible Goods:  Ex-Ante EF + Ex-Post EFX + Ex-Post fPO
	Technique Discussion and Detailed Descriptions of Algorithm 2
	Fairness
	Efficiency

	Conclusion
	Omitted Proofs in Section 3
	Proof of Lemma 3.1
	Proof of Theorem 3.2
	Proof of Theorem 3.3

	Omitted Details in Section 4
	Finding the Minimal Unmatchable Group
	Reduction to m 2n-2
	Allocating Remaining Goods

	Omitted Details in Section 5
	Proof of lem:efxfpoexpostefx
	Proof of Lemma 5.4
	Descriptions of Fisher Market
	Proof of Lemma 5.5 when m<n


